
FOCUS NOTE

OPEN-SOURCE TECHNOLOGIES
IN THE CONTEXT OF

FAST PAYMENT SYSTEMS

FEBRUARY 2025

B  |  Fast Payment Systems: Preliminary Analysis of Global Developments

© 2025 International Bank for Reconstruction and Development / The World Bank
1818 H Street NW
Washington DC 20433
Telephone: 202-473-1000
Internet: www.worldbank.org

This volume is a product of the staff of the World Bank. The findings, interpretations, and conclusions expressed in this
volume do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent.

The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations,
and other information shown on any map in this work do not imply any judgment on the part of the World Bank
concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

RIGHTS AND PERMISSIONS
The material in this publication is subject to copyright. Because the World Bank encourages dissemination of their
knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution
is given.

FINANCE, COMPETITIVENESS & INNOVATION GLOBAL PRACTICE

Payment Systems Development Group

1.	 EXECUTIVE SUMMARY   1

2.	 INTRODUCTION   4

Components of FPS   5
What Is Open-Source Technology, and How Does It Differ from Proprietary Technology?   5

3.	 OPEN SOURCE IN THE CONTEXT OF FPS   5

Components of FPS   5
What Is Open-Source Technology, and How Does It Differ from Proprietary Technology?   5

4.	 A TAXONOMY OF OPEN-SOURCE TECHNOLOGY FOR FPS   8

Ground-Up Open Source   8
Proprietary, with Open-Source Elements   8
Proprietary Software   9

5.	 RISKS AND BENEFITS OF OPEN-SOURCE TECHNOLOGIES   11

Design and Conceptualization  11
Implementation   13
Operation   14
Cost Implications across the Life Cycle of an FPS   16
Maturity of an Organization to Leverage Open Source   18

6.	 LESSONS LEARNED   19

Open source in payments is still a growing space.   19
Consider the following key factors before leveraging open source for FPS.   19
Choosing open-source technologies requires embracing a long-term vision and clearly

assessing the capacity of the organization to adopt them.   20
Operators and regulators must assess the potential risks of open-source technologies

not only for the FPS but for the broader payments ecosystem.   20

7.	 CONCLUSIONS   23

8.	 ACKNOWLEDGMENTS   24

APPENDIX A: SPECIFIC COMPONENTS OF AN FPS   25

APPENDIX B: COMPONENTS OF AN OPEN-SOURCE SOLUTION AND ECOSYSTEM    26

APPENDIX C: SECURE DESIGN PRINCIPLES   28

CONTENTS

  |  i

ii  | 

EXECUTIVE SUMMARY

Open-source software has gained significant popularity due to its zero ini-

tial cost and widespread adoption across industries. Recent studies show that

open-source software appears in nearly 97 percent of codebases across different

sectors. A Harvard University study estimates that re-creating widely used open-

source software would cost about $4.5 billion, and up to $8.8 trillion if every firm

leveraging open-source software re-created the software. These figures highlight

the significant economic impact and importance of open-source software across

the global software landscape.1

In the context of a fast payment system (FPS), the use of open-source software

for core components is still at an early stage. Our research identified only one

live FPS using open-source software for core functionalities. Despite the limited

adoption of open-source software in FPS, interest is growing among payment

system operators, particularly in initiatives such as Mojaloop. Moreover, some FPS

operators may choose to use open-source software for non-core components,

making it crucial for both operators and regulators to be aware of the poten-

tial impacts that open-source software may have, both positive and negative,

on the overall efficiency and resilience of FPS. This note, given rising interest in

open-source software for FPS, examines its use as well as relevant implementa-

tion models, risks, benefits, and costs. The World Bank remains neutral on the use

of open-source software in FPS, neither endorsing nor discouraging its adop-

tion. However, it encourages countries and FPS operators to evaluate their insti-

tutional capacity to implement open-source software aptly and manage its risks,

the level of support from the open-source community, and the full cost implica-

tions beyond initial deployment. While open-source software offers advantages,

such as cost savings from reduced licensing fees and the flexibility to customize

systems, it also presents challenges. Institutions need significant in-house exper-

tise for customization, maintenance, and operation and must align their long-

term FPS goals with the chosen open-source solutions to ensure adaptability and

scalability. Thorough cost-benefit analyses are essential to weigh the immediate

benefits against potential long-term challenges, particularly around operational

capacity and system enhancements.

1

  |  1

2  |  Open-Source Technologies in the Context of Fast Payment Systems

  |  2

Moreover, adopting open-source software for FPS intro-

duces specific risks, particularly around cybersecurity and

integration with existing systems. Vulnerabilities in open-

source components can expose systems to a broader range

of threats. While the open nature of open-source software

can enhance transparency, it can also expose vulnerabil-

ities to a wider audience, including potential attackers. As

demonstrated by past security incidents, such as the Log4S-

hell vulnerability, unpatched or outdated open-source

software components can pose significant risks to critical

systems such as FPS.

Therefore, operators and regulators must be proactive in

assessing these risks, ensuring that robust security measures

are in place and continuously monitoring for updates and

vulnerabilities. While open-source software offers potential

benefits, these must be balanced carefully with operational,

security, and regulatory considerations to ensure the resil-

ience and long-term sustainability of FPS infrastructures.

The note highlights the following learnings:

•	 Open source in payments is still a growing space.
There is increasing interest from operators in the benefits

that open source can bring to payments, including FPS.

Mojaloop is one example that operators have just begun

to assess actively. However, it is key to note that some FPS

do utilize open-source components, particularly for non-

core software and infrastructure.

•	 Consider the following key factors across the life cycle
of an FPS before leveraging open source:

Design and conceptualization

	– Requirement alignment: Ensuring that open-source

solutions meet the functional, business, and security

needs of the FPS is crucial. Operators must confirm

that these solutions align with current and future re-

quirements, and open-source projects should adhere

to open standards such as ISO 20022 for seamless

interoperability.

	– Regulatory and legal implications: Open-source

solutions must comply with local and international

regulations. Institutions must also carefully navigate

intellectual property issues and open-source licens-

ing to avoid unwanted disclosure of proprietary en-

hancements.

	– Security by design: Incorporating secure design prin-

ciples from the beginning of the project is essential

to mitigate cyber risks.

Implementation

	– Adaptability: Open-source solutions offer customi-

zation but require significant expertise for them to be

tailored to institutional needs, which can introduce

security vulnerabilities if not handled properly. Proper

documentation is key to managing the complexity of

the implementation.

	– Capacity: Institutions need strong internal technical

capabilities or external support to implement open-

source FPS effectively. This includes building a dedi-

cated team of system integrators to ensure seamless

customization and security updates.

	– Customization versus vendor lock-in: Open-source

solutions reduce vendor lock-in, but a lack of ven-

dors for specific components may increase costs and

timelines.

	– Secure integration: Operators should treat open

source with the same rigor as proprietary code by

selecting pre-vetted components, conducting initial

and ongoing vulnerability assessments using soft-

ware composition analysis tools, and performing reg-

ular scans during development and build stages.

Operation

	– Security: While open-source solutions allow for code

review and collective security checks, vulnerabilities

can still remain undetected for years. Regular vulner-

ability assessments and third-party audits are essen-

tial.

	– Maintenance and support: Institutions must ensure

that they have the internal capacity to maintain and

troubleshoot open-source solutions, as they do not

come with the same level of vendor support as pro-

prietary solutions.

	– Strength and expertise of the open-source commu-

nity: A highly active and skilled community ensures

ongoing support, timely updates, and rapid respons-

es to security issues. However, if the community lacks

sufficient expertise or is inactive, slower updates,

unresolved problems, and increased risks for the FPS

may be the result.

	– System migration: Open-source solutions must con-

sider long-term migration costs, including compati-

bility issues and the potential loss of customizations

when transitioning to new systems.

Open-Source Technologies in the Context of Fast Payment Systems  |  3

	– Monitoring: It is essential to stay updated on open-

source components and monitor for vulnerabilities,

promptly updating or replacing unsupported com-

ponents. Additionally, implementing a software bill

of materials enhances transparency, documents com-

ponent origins, and aids in managing vulnerabilities.

Maturity of an organization to leverage open source

	– Operational readiness: Implementing open-source

FPS requires robust operational and technological ca-

pabilities, and institutions need to manage potential

risks. This requires a full assessment of internal ca-

pacity as well as of available external resources, such

as system integrators, to ensure seamless integration,

ongoing support, and effective risk mitigation.

	– Maturity models: Tools such as maturity models

can help operators assess and develop their ability

to manage and contribute to open-source projects,

enhancing strategic and operational alignment with

open-source practices.

Cost implications across the life cycle of an FPS

	– Total cost of ownership: Open-source solutions can

reduce initial costs by eliminating licensing fees but

may increase internal development and operational

expenses. Analyzing the total cost of ownership, in-

cluding future maintenance, security, and migration

costs, is necessary.

	– Hidden costs: Costs for integrating new functional-

ities, adhering to evolving standards, and adapting

to new use cases must be considered. FPS as a digital

public infrastructure increases the pressure for con-

tinual innovation and resilience.

•	 Choosing open-source technologies requires embrac-
ing a long-term vision and clearly assessing the capac-
ity of the organization to adopt them. Institutions

implementing an FPS must ensure that their long-term

vision aligns with the open-source solutions they adopt,

prioritizing the adaptability and scalability of the solu-

tions, as well as their capacity to customize them, over

immediate simplicity and cost savings.

•	 Operators and regulators must assess the potential
risks of open-source technologies not only for FPS
but also for the broader payment ecosystem. FPS and

payment systems do not operate in a vacuum, and even

when they do not leverage open-source software for

their core components, they can still be exposed to vul-

nerabilities stemming from open-source software and

platforms. Open-source technology can carry cyber and

operational risks, and its widespread usage and integra-

tion with proprietary components can expose vulner-

abilities to a broader audience. These risks necessitate

continuous monitoring, proactive contingency planning,

and a thorough assessment of both internal and external

resources. Therefore, regulators and operators should

adopt a proactive approach to reviewing the overall

impact of open-source technology across FPS and the

broader payment ecosystem.

INTRODUCTION2

  |  4  |  4

The World Bank has been monitoring closely the develop-

ment of fast payment systems (FPS) by central banks and pri-

vate players across the globe. This comprehensive study of

FPS implementations has resulted in a policy toolkit designed

to guide jurisdictions and regions on the likely alternatives

and models that could assist them in their policy and imple-

mentation choices when they embark on their FPS journeys.

The FPS Toolkit can be found at fastpayments.worldbank.org

and consists of the following components:

•	 The main report Considerations and Lessons for the Devel-

opment and Implementation of Fast Payment Systems

•	 Case studies of jurisdiction that have already imple-

mented fast payments

•	 A set of short focus notes on specific technical topics

related to fast payments

4  | 

OPEN SOURCE IN THE CONTEXT OF FPS

COMPONENTS OF FPS

An FPS allows for immediate fund availability to beneficia-

ries and can be used 24 hours a day, seven days a week,

365 days a year. Such a system generally includes the follow-

ing components to be managed by an operator or different

operators: core-clearing and settlement infrastructure,2 an

application layer, and a scheme/rulebook governing rela-

tionships between participants and relevant parties.3

However, establishing a new national payment rail may

require significant investment. FPS involve a wide range

of components that, taken together, involve ongoing costs

to be managed by national payment system operators.

Depending on the chosen infrastructure, participant types,

and supported use cases, the cost and timeline of develop-

ment can vary significantly. These can vary further if the FPS

is built on existing infrastructure or developed from scratch.

Aside from the cost of building the system, multiple other

costs accrue to the FPS, including operating, maintenance,

and marketing costs. Annex A explores the specific compo-

nents of an FPS in more detail.

FPS development could be funded by the central bank

of a jurisdiction, by participating institutions (banks and/or

non-banks), or collectively via public-private partnerships. It

requires teams comprising specialists from various domains

for good execution. The FPS life cycle further entails contin-

uous enhancement and development, requiring investment

throughout.

A determining cost factor is the operator’s choice to

self-source, insource, or outsource development of the

FPS. With self-sourcing, the operator is fully responsible for

all the software, hardware, and people required to imple-

3
ment and operate an FPS autonomously.4 With insourcing,

an operator’s innate capacity is augmented by development

resources either from other government agencies or from

external sources, but for the duration of the development

project only.

Making a decision based on such factors as cybersecurity

regulation, institutional knowledge, and cost, jurisdictions

can choose to implement FPS themselves, leverage vendors,

or opt for open-source software. Some payment system

operators, central banks, and public authorities are evalu-

ating open-source specifications, examining the potential

costs and benefits to determine the feasibility and conve-

nience of implementing these solutions.

WHAT IS OPEN-SOURCE TECHNOLOGY,
AND HOW DOES IT DIFFER FROM
PROPRIETARY TECHNOLOGY?

One way to examine the key features of the open-source

technology construct is to contrast it with its opposite—

proprietary technology. While in both cases the technology

consists entirely of software and its source code, licenses

and usage permissions differ. With proprietary technology,

the organization or author of a piece of software places

restrictions on the use and modification of that software,

governed by licensing agreements between the user and

developer. Users are often required to agree to use software

as explicitly provided by the developer. This means that

users are dependent on the developer to add new function-

ality and correct the software in line with the developer’s

predetermined development cycle.5

  |  5

6  |  Open-Source Technologies in the Context of Fast Payment Systems

6  | 

With open-source technology, the license6 enables users

to modify, study, use, and distribute the software and its

source code for any purpose.7 In the canonical open-source

model, source code is made available for developers, along

with documentation and guidance on use. The upkeep and

maintenance of these projects varies across codebases (the

full body of source code for a given project) but, in some

cases, is overseen by a foundation or central organization.

Examples include the Apache Software Foundation and the

Linux Foundation. This open-source construct, mediated by

its governance model, has important consequences in terms

of cost, security, and functionality. A distinction should be

made between an open-source system software and its

open-source dependencies—modules the system depends

on that are built, released, and maintained by other open-

source projects. The publisher of the system software itself

and the publishers of its individual dependencies together

are referred to as the software supply chain.

Open-source software and components are widespread

in software projects, and they are leveraged as well within

proprietary solutions. Prominent applications and operating

systems are based on the Linux kernel, while other appli-

cations leverage key open-source software components.

Indeed, several companies exist whose core ethos is to

develop software from open-source platforms. One is Red-

Hat, which builds a wide range of open-source products,

including cloud infrastructure, middleware, and operating

systems (box 1).

The World Bank has made use of open source in the

realms of geospatial analysis and disaster resilience, as

described in box 2.

Open-source software has already been made available

in payments technology.8 A preeminent example is the

open-source software Mojaloop (box 3).

6  | 

FINOS reports that open-source GitHub repositories

with financial service company commits rose by 43 per-

cent between 2021 and 2022.9 Examples are a user-in-

terface project by J.P. Morgan, a high-performance data

store by the Man Group, and others, including appli-

cations ranging from user-interface toolkits to financial

infrastructure code. Further, the cloud-native platform

Kubernetes, which many companies use, is open source.

Companies such as Google and Microsoft go a step fur-

GOSTNets

GOSTNets is a tool developed by the Geospa-

tial Operations Support Team at the World Bank.

GOSTNets itself was designed as a convenience

wrapper for network analysis using geospatial

information, particularly from OpenStreetMap.

GOSTNets utilizes open source in multiple ways

to enhance its network-analysis capabilities, espe-

cially through leveraging geospatial information.

GOSTNets focuses primarily on using data from

OpenStreetMap, which is a collaborative project to

create a free editable map of the world. GOSTNets

integrates with the NetworkX Python library, which

is an open-source tool designed for the creation,

manipulation, and study of the structure, dynam-

ics, and functions of complex networks.

OpenDRI

The Open Data for Resilience Initiative (OpenDRI),

another initiative by the World Bank, employs open-

source tools to bolster resilience against natural

hazards and the effects of climate change. Open-

DRI uses GeoNode, an open-source data-sharing

platform that facilitates public access to vital risk

information. This platform is instrumental in

managing, analyzing, and storing crucial data for

informed planning and policy making. Further-

ther and actively participate in the open-source com-

munity.10,11 Google, among others, has an entire team

dedicated to maintaining open-source projects that

are crucial to the entire industry, not just itself. Other

companies, such as Razorpay (an Indian payments

company), MongoDB, GitHub, and Databricks, have ori-

ented themselves from their basic structure to support

open-source software and regularly release their own

source code to enable collaboration and extensibility.12

BOX 1   USAGE OF OPEN-SOURCE SOFTWARE

BOX 2  � WORLD BANK INITIATIVES THAT
LEVERAGE OPEN SOURCE

6  | 

Open-Source Technologies in the Context of Fast Payment Systems  |  7

  |  7

Mojaloop, an open-source FPS, was created to address

the needs of individuals typically excluded from the

formal financial system. One significant motivation for

making Mojaloop open source was providing an afford-

able and accessible alternative for jurisdictions looking

to establish a national payment infrastructure.

At its core, Mojaloop provides a set of interopera-

bility and payment functionalities that facilitate fund

transfers, especially geared toward faster payments The

architecture of Mojaloop is based on the principles of an

open-loop system,13 in which different financial service

providers can connect to the platform and exchange

transactions seamlessly. Mojaloop entails three layers: an

interoperability layer, connecting bank accounts, wal-

lets, and merchants in an open loop; a directory service

layer, which provides an alias-lookup service for when

accounts are masked using proxies; and a transac-

tions-settlement layer, which makes instant and irrevo-

cable payments possible. Integration of Mojaloop need

not require leveraging the entire Mojaloop package, a

user can pick and choose components.

Mojaloop incorporates various standardized mes-

sage formats and protocols, such as ISO 20022 and the

Interledger Protocol (ILP), to enable the secure transfer

of funds and information between different systems.

The use of the ILP is notable because of its decentral-

ized design and cryptographic security elements and its

easy extension into interoperability.14 It supports a wide

variety of transaction types, including fast payments in

a broad range of financial service scenarios.

It is important to note that while Mojaloop provides

the underlying technology and infrastructure, its adop-

tion and implementation depend on the collaboration

and participation of financial institutions, regulators,

and other stakeholders in the ecosystem to establish a

fully functional and inclusive digital payment network.15

As part of this, Mojaloop offers developers full access to

its codebase and actively encourages contributions from

them. While Mojaloop has a team that maintains the

codebase, it does rely on contributions from adopters.

Mojaloop was designed to support low- and large-

scale volumes, such as those seen in developed mar-

kets, such as India. Mojaloop’s design is intended for

horizontal scaling, with low-cost, redundant servers to

ensure data integrity even if nodes fail.

Security was a core consideration from the initial

design of Mojaloop, which employs a zero-trust model,

two-factor authentication system and roles-based

access. In its development, a community of over 2,400

members participate at various levels of involvement.

The Mojaloop stack includes the following modular

services:

•	 API functionality

•	 Central services (basic clearing and settlement func-

tionality)

•	 Account-lookup service (participant-lookup service)

•	 Quoting service (enables fee transparency on the

platform)

•	 Fraud risk–management services

BOX 3   FPS SPECIFICATIONS DEVELOPED BY MOJALOOP

Sources: https://opendri.org/about/, https://github.com/
worldbank/GOSTnets

more, OpenDRI leverages InaSAFE, an open-source

software that amalgamates scientific data, commu-

nity input, and local government information to fore-

cast the potential impacts of disaster events.

BOX 2, continued

https://opendri.org/about/
https://github.com/worldbank/GOSTnets
https://github.com/worldbank/GOSTnets

A TAXONOMY OF OPEN-SOURCE
TECHNOLOGY FOR FPS

As open-source specifications have begun to appear in the

fast payments space, an emerging broad taxonomy has

incorporated the following three types of systems:

1.	 Ground-up open-source systems

2.	 Proprietary systems, with open-source peripherals

3.	 Proprietary software

While most FPS are closed source, newer systems incorpo-

rate open-source elements to varying degrees. Some may

be fully open source, while others incorporate open-source

elements.

GROUND-UP OPEN SOURCE

A ground-up open-source fast payments project places

open source at its core. This means that it need not retro-

actively work to publish code for the benefit of its userbase.

Instead, code is sourced publicly, and system-specific devel-

opments may be shared back or at least made accessible to

its userbase from the start of the project. In such a scheme,

the default for any module or application produced is that

it is open to the public. Certain components may be held

privately within the foundation or entity that manages the

project, such as fraud rules or other sensitive materials, but

even these are made available when possible and as appro-

priate. While opening the source code to the public has its

benefits, especially in terms of code review and analysis for

security vulnerabilities, a ground-up open-source model

also contains certain cyber risks. For example, the ability to

review and assess the source code independently can offer

4
increased security when the code is examined thoroughly

and from multiple angles, but at the same time, the public

availability of the programming code may allow adversaries

or those interested in committing fraud to study the code for

potential vulnerabilities, without revealing them.16 Initially or

over time, such a project may develop a governance struc-

ture that ensures its openness while also promoting a steady

pace of development. It may choose to enable users to con-

tribute to the codebase through a structured contribution,

review, and approval process. An open-source organization

such as this, as best practice, will provide documentation

for its projects and components. Entities choosing to imple-

ment such a project can then take this documentation and

build internal uses of that project. Some open-source orga-

nizations will provide active support and guidance in the

implementation process, if requested. In other cases, imple-

menting entities may choose to leverage internal or out-

sourced expertise to build on existing open-source projects.

Components of an open-source solution and ecosystem are

included in annex B.

PROPRIETARY, WITH OPEN-SOURCE
ELEMENTS

As institutions continue to implement FPS, some have

begun to explore the value of making peripheral sections

of these systems open source. Generally, however, these

have tended toward open-standards approaches and not

genuine open source. FPS have generally been closed

source by default, given the high level of effort required to

8  | 

Open-Source Technologies in the Context of Fast Payment Systems  |  9

develop them and other considerations, including security.

Further, the community that might participate in such an

open-source project is necessarily small, given that it would

be made up only of central banks and payment system

operators and systems integrators that connect financial

institutions to these FPS. The fact that the community is

small and that there may be insufficient resources to ade-

quately evaluate the security of open-source components,

such as open-source modules, or libraries, may increase

the level of cyber risk associated with such initiatives. How-

ever, established FPS have made small steps to open-source

some aspects of these systems. In some cases, communi-

cation protocols have been made open for use and input

by the community. Open-communications standards, espe-

cially using the Open API construct, have enabled faster and

more responsive connectivity with central banks. Examples

of proprietary FPS that have integrated or developed open-

source solutions are included in box 4.

PROPRIETARY SOFTWARE

As mentioned previously, most fast payment implemen-

tations are closed source. In many cases, this is the default

approach; for others, it simply has not made sense to use

open-source specifications. For many jurisdictions, the pros-

pect of building an FPS is challenging, given the limited level

of expertise on the topic that exists within central banks. For

many, it makes sense to outsource development and main-

tenance fully to a third-party vendor. In these cases, central

banks can provide their requirements in terms of features,

stability, and security and receive an FPS built and main-

tained by an experienced team. These projects are neces-

sarily closed source.

Examples of proprietary FPS include systems operated by

the private sector, such as the New Payments Platform in

Australia, PromptPay in Thailand, and the Faster Payments

Service in the United Kingdom.

There is another type of proprietary solutions—those

developed by operators, such as central banks, on their own.

These systems were specifically tailored to meet the needs of

the local market, ensuring compliance with local regulations

and standards and integrating seamlessly with the existing

financial infrastructure. The systems are proprietary, and key

technological components are not made available to the

public. Examples of this type are the FPS built and operated

by the central banks of Mexico (SPEI), Turkey (FAST), and

Costa Rica (Sinpe Móvil), which have developed core com-

Brazil

Pix is an FPS introduced by the Central Bank of Brazil in

November 2020. Pix revolutionized the Brazilian pay-

ment landscape by providing a fast, secure, and acces-

sible method for making electronic transactions.

As stated during interviews held with the Central Bank

of Brazil, the role of the open-source approach in Pix is

evident in certain aspects of the system. Although the

Pix code itself is not open source, Pix relies on some

open-source products. The system comprises three

main systems developed internally by the Brazilian cen-

tral bank (DICT, SPI, and ICOM) and includes a combina-

tion of open-source and proprietary market products.

The decision to use open-source or proprietary solu-

tions is based on the maturity of available options for

each technical need. For instance, if a specific techni-

cal challenge arises—for example, container orchestra-

tion—the central bank assesses the maturity level of

open-source solutions such as Kubernetes. If a relevant

production track record, an active community, and fre-

quent updates exist, the bank adopts the open-source

solution. Otherwise, it opts for proprietary software.

India

UPI (Unified Payments Interface) is an instant interbank

electronic fund transfer system launched by the National

Payments Corporation of India (NPCI) in 2016 to facili-

tate real-time money transfers between bank accounts

using mobile phones, internet banking, or ATM services.

Much like Pix, it enables instant payments between

participants and is meant to be easily accessible for a

wide set of users and interoperable with other payment

methods and systems. The Immediate Payment System

and the general Indian payment stack are generally not

open source. However, the NPCI has released certain

open-standard components, such as the BHIM service.

The BHIM service, launched in 2016, was made open

source in 2022 and is intended to allow banks to spin

up a mobile banking app quickly, without spending

excessive time and resources on development.17

BOX 4   USAGE AND DEVELOPMENT OF OPEN SOURCE BY PROPRIETARY FPS

10  |  Open-Source Technologies in the Context of Fast Payment Systems

ponents of their FPS on their own, with these solutions being

entirely proprietary.

However, even in these proprietary systems, a reliance on

open-source components is unavoidable: Relational data-

base-management systems such as MySQL, caching systems

for performance such as Varnish and Redis, durable mes-

saging systems such Apache Kafka, and the Java language

system and libraries are all significant open-source elements

commonly used in financial systems.

This is also apparent in cloud services offered by the

major service providers. Core facilities such as load balancers,

data stores, virtual machines, container orchestration, and

operating system software, for example, can be open-source

components. Since they are running open-source software,

so are their users.

New solutions have surfaced recently, notably in the realm

of cloud computing, such as software-as-a-service. Compa-

nies such as Vocalink are offering fully hosted and managed

FPS that, depending on the country context, may provide

them with enhanced flexibility and a swifter time to mar-

ket.18 Nevertheless, the transaction-based pricing model em-

ployed by such services might lead to losing the benefit of

lower per-transaction pricing, even though the per-transac-

tion costs will come down as the utilization of the system

increases.

RISKS AND BENEFITS OF OPEN-SOURCE TECHNOLOGIES

Institutions choosing whether to incorporate open-source

components in their FPS must consider costs, risks, and

benefits in relation to closed-source alternatives across the

FPS life cycle. To support this analysis, the below section

highlights issues that institutions must account for in each

broad segment of the life cycle: design and conceptualiza-

tion, implementation, and operation.

DESIGN AND CONCEPTUALIZATION

When choosing to design and develop an FPS, institutions

must carefully consider their requirements, the capabilities

of potential vendors and available technologies, costs, and

internal resources and capabilities. In this context, deciding

between open- and closed-source implementation carries

the following key implications:

•	 Requirement alignment: As described in annex A, mod-

ern FPS have many functional requirements to deliver

maximum value for participants and retail customers.

Open-source projects may or may not have these fea-

tures/functionalities; a key task in procurement is to

ensure alignment between institutional requirements

and the functionality of the solution under consideration.

A well-considered solution (open source or closed source)

should be able to address the most relevant needs of its

users and be extensible for relevant use cases not directly

addressed. In the longer term, the solution should be

able to show missing features on its development road

map. However, if the evaluated system is overly focused

5
on certain use cases, and is unable or unwilling to imple-

ment user feedback, the immediate benefit of the sys-

tem offering is limited. In addition, besides business and

functional requirements, the system needs to meet cer-

tain security requirements in order to ensure the safe and

sound functioning of the entire payment process.

If open-source software and platforms exhibit limita-

tions in their current and potential future functionalities,

operators must rigorously evaluate the cost-effectiveness

and efficiency of either outsourcing or internally devel-

oping these capabilities, and balance those costs against

the commercial offerings. Furthermore, it is crucial for

operators to thoroughly assess the compatibility of their

and the participants’ existing and future technological

and operational infrastructure with open-source software

and platforms. This analysis should consider potential

conflicts with other components within a user’s technol-

ogy stack, as such incompatibilities can create challenges

in seamlessly integrating and utilizing the open-source

technology alongside other system elements. The com-

patibility of proprietary components with other system

elements provided by others, whether open source or

commercial, will depend on the openness of the propri-

etary systems to interoperability of data and function,

and on their adherence to open standards (box 5).

•	 Regulatory and legal implications: When evaluating

the feasibility of implementing an open-source FPS, a

crucial consideration is the solution’s ability to comply

with regulatory requirements and pertinent standards.

These requirements can vary significantly, encompassing

  |  11

12  |  Open-Source Technologies in the Context of Fast Payment Systems

Open standards are defined by a transparent devel-

opment process that encourages broad participation,

ensuring that the resulting specifications are accessible

to everyone.19 The authoritative source for these stan-

dards is the widely accepted formal technical specifica-

tions, which supersede any reference implementation.

This approach facilitates the creation of interoperable

software solutions by various organizations, allowing

the solutions to operate harmoniously within a shared

ecosystem.

Open standards and open-source projects are

complementary. Open-source projects gain valuable

insights and direction from open standards, particularly

in terms of interface design and message formats for

interoperability and portability, enhancing their ability

to integrate and function seamlessly across different

platforms. Open standards require implementations to

confirm their suitability, establish a market presence,

and gather feedback from implementors and users.

In the context of FPS, it is crucial for both proprietary

and open-source projects to adhere to appropriate

open standards when crafting their implementations.

This adherence is essential to guaranteeing seamless

interoperability and the smooth integration of FPS ser-

vices into the broader payments and communications

ecosystems. Common examples of these open stan-

dards, frequently embraced within FPS, encompass

financial messaging standards, notably ISO 20022 and

ISO 8583; both suites of international standards; and

commercial industry standards of more narrow pur-

pose, such as the EMVCo QR code specifications. And

open industry standards for system hosting, API devel-

opment, and inter-entity communication have been

established and maintained for modern internet-based

application ecosystems. These industry standards are

essential to lowering the cost of development and par-

ticipation by non-bank actors in market roles adjacent

to an FPS.

BOX 5   RELEVANCE OF OPEN STANDARDS FOR OPEN-SOURCE PROJECTS

both local and international regulations. For example, in

a particular jurisdiction an FPS will need to comply with

cybersecurity mandates that ensure that the system’s

security measures are robust enough to protect against

threats and vulnerabilities. On an international level, an

FPS will need to comply with established standards, such

as the CPMI-IOSCO Principles for Financial Market Infra-

structures.

Moreover, when developing an FPS using open-source

technology, attention to intellectual property rights is

essential. Open-source software is often perceived as

freely accessible, yet it is regulated by diverse licensing

agreements that can greatly influence both the function-

ality and legal standing of the system. A critical aspect

to consider is the type of open-source license involved

and the licenses under which dependent components are

offered.

For instance, with a copyleft license, any distributed

modifications or enhancements to the original soft-

ware must be publicly disclosed using the same copyl-

eft license. However, this requirement affects only cases

where the modified software is distributed, not where it

is used privately. The following explanation comes from

the GNU General Public License (GPL) FAQ:20

“�The GPL does not require you to release your modified

version, or any part of it. You are free to make modifi-

cations and use them privately, without ever releasing

them. This applies to organizations (including compa-

nies), too; an organization can make a modified version

and use it internally without ever releasing it outside

the organization.”

But this requirement can pose concerns when distributing

the modified software is necessary to achieve payment sys-

tem goals, especially when these changes pertain to opera-

tional details of the FPS that are confidential by regulation

or contract.

By contrast, there are licenses that can be considered

commercially friendly, as they are supportive of proprietary

use without onward disclosure of enhancements. A care-

ful legal analysis is required to assess the suitability of each

license to each operator’s context and needs. Therefore, a

thorough understanding of open-source licenses and their

implications for intellectual property rights is vital to ensur-

ing the development of a secure, compliant, and effective

FPS (box 6).

From a cyber risk perspective, it may help to incorpo-

rate the principle of security by design. It is typically much

Open-Source Technologies in the Context of Fast Payment Systems  |  13

The GNU General Public License, version 3, is a widely

adopted, free software license that ensures that end

users—whether individuals, organizations, or compa-

nies—have the freedoms to run, study, share (copy),

and modify the software. This strong copyleft license

requires that the complete source code of licensed

works and any modifications, including larger works

that use a licensed work, be made available under the

same license. It also mandates the preservation of copy-

right and license notices, and contributors must provide

an express grant of patent rights.

The Apache License 2.0, released by the Apache

Software Foundation, is an open-source software

license with permissive terms. It requires the preser-

vation of copyright and license notices and includes

an express grant of patent rights from contributors.

Licensed works, modifications, and larger works can be

distributed under different terms and without the need

to provide source code.

The Mozilla Public License 2.0 is a simple copyleft

license. This weak copyleft license requires that the

source code of licensed files and their modifications

be made available under the same license (or, in some

cases, one of the GNU licenses). It also mandates the

preservation of copyright and license notices, and con-

tributors must provide an express grant of patent rights.

However, larger works that incorporate the licensed

work can be distributed under different terms, and the

source code for files added in the larger work does not

need to be provided.

The European Union Public License is a free soft-

ware license initiated and approved by the European

Commission. It aligns with the copyright laws of the

European Union member states and is compatible with

popular open-source software licenses, such as the GPL.

BOX 6   TYPES OF OPEN-SOURCE LICENSES21

more effective to adopt secure design principles right from

the beginning than to address cyber risk as an afterthought.

While no techniques are foolproof, it is important (even

vital) to develop relevant protection mechanisms that are

based on different controls that need to be implemented to

secure information systems. This includes payment systems.

The U.S. National Centers of Academic Excellence in Cyber-

security list 13 baseline security principles that should be

followed for developing relevant protection mechanisms.22

Figure 1 shows the 12 design principles that are considered

fundamental. Please refer to appendix C for further details

on the secure design principles.

IMPLEMENTATION

When implementing an FPS, institutions can modify several

considerations by using an open-source or proprietary solu-

tions. A key consideration in this decision-making process is

the cost of implementation. This cost is significantly affected

by two main elements: the adaptability of the chosen solu-

tion, and the capacity of the implementing institution to tai-

lor the solution to meet its specific needs.

Economy of mechanism

Separation of privilege

Psychological acceptability

Least privilege

Fail-safe defaults

Isolation

Least common mechanism

Encapsulation

Common mediation

Modulation

Open design

Layering

 FIGURE 1 Secure Design Principles

14  |  Open-Source Technologies in the Context of Fast Payment Systems

•	 Adaptability: Leveraging an open-source solution may

allow for customizability. Since the source code is openly

accessible, operators can modify independently and

customize the software to suit their specific needs. How-

ever, this customization is not without its challenges. To

alter the code effectively for specific use cases and func-

tionalities, a high level of multidisciplinary expertise is

necessary. The alteration and modification of code may

inadvertently introduce vulnerabilities into the system,

which may subsequently lead to an increase in cyber

risk. Additionally, for successful customization, open-

source projects must be accompanied by comprehen-

sive documentation. This documentation is crucial for

fully understanding the solution’s scope and facilitating

the implementation process. The challenge in custom-

izing open-source solutions often lies in the complexity

and scale of the software, which can make it difficult to

modify without in-depth knowledge of its architecture

and dependencies. Furthermore, integrating new mod-

ules and functionalities into an FPS can be a challenging

and intricate task due to the dynamic nature of the pay-

ments industry. This sector is characterized by continual

advancements, necessitating regular software updates

and enhancements to keep pace with emerging trends

and technologies. Consider the availability of open-mar-

ket expertise in the open-source platform to augment

operational staff.

In fact, while open-source solutions offer adaptabil-

ity and customizability due to accessible source code,

entities implementing these solutions may still face chal-

lenges. Often, they need to engage a systems integrator

to help customize the software, which can incur addi-

tional costs and potentially lead to the vendor lock-in

issues they aimed to avoid with proprietary software.

In contrast, proprietary solutions may require that a vendor

has the willingness and capability to tailor an implementa-

tion to the specific needs of the institution, which will also

come at an additional cost. However, proprietary software

vendors may be better equipped to provide targeted modi-

fications and support.

•	 Capacity: As mentioned above, open-source compo-

nents may be more directly configurable by the imple-

menting institution than their proprietary counterparts, as

this kind of customization requires substantial expertise

and resources. Being a fully fledged member of an open-

source community often requires having a strong com-

munity around the open-source project within a given

institution, technical capabilities with respect to open-

source development and management, and accommo-

dative internal policies for engagement with open-source

software and communities.

Often, institutions seeking to develop FPS lack the

sophisticated internal technical community necessary

to take full advantage of the flexibility that open source

offers. This applies particularly to the knowledge of differ-

ent programming languages and development practices

that may be necessary to develop and maintain open-

source information systems, including payment systems.

Secure coding practices form a vital component of devel-

oping secure payment systems. Instead, institutions can

rely on external vendors to support the development of

their payment system. Some open-source projects may

have large vendor communities ready to support such

an effort. Others are actively driving the growth of such

communities. In scenarios such as these, using open

source prevents vendor lock-in. However, it is also pos-

sible that few vendors exist for specific components of a

hypothetical open-source implementation, causing costs

to rise and timelines to widen.

Moreover, to implement effective open-source FPS

solutions, it is imperative that the implementing entity

considers maintaining a dedicated team of system inte-

grators and engineers, regardless of outsourcing the

development in full or in part to external systems integra-

tors. These professionals are essential for supporting the

implementation process, ensuring that the open-source

solutions are customized and optimized to meet the

unique requirements of the institution. Their expertise not

only facilitates the technical adaptation of these solutions

but also ensures that the integration is seamless, secure,

and in alignment with the institution’s technological and

operational framework. Additionally, these personnel will

play a crucial role in promptly applying system updates to

address arising issues. This applies to both open-source

and proprietary solutions, albeit to varying extents based

on the reliance on external vendors. But once an update

becomes available, the operational staff will be depended

on to schedule and deploy the updates appropriately as

part of the ongoing management and operation of the

FPS, unless this is part of the maintenance agreement.

OPERATION

Various benefits and costs of an open-source solution have an

ongoing nature, persistent through the operation of an FPS.

•	 Security: Open-source software provides benefits with

regards to security, particularly cybersecurity, but also

comes with drawbacks. With the source code available

Open-Source Technologies in the Context of Fast Payment Systems  |  15

for inspection, users can verify the security and integrity

of the software. Vulnerabilities may be discovered and

addressed based on the collective efforts and expertise

of the community.23 Projects with effective governance

structures often conduct their own internal security and

license checks as well. But an important aspect to con-

sider when evaluating the cybersecurity of open-source

systems is that merely publishing the source code does

not inherently ensure security. This also means that mak-

ing the source code available does not guarantee it will

be scrutinized for security flaws. Often, certain portions of

the source code may not be reviewed promptly by secu-

rity experts or other relevant evaluators due to resource

constraints. Recent research from GitHub suggests that

technical vulnerabilities in libraries that are widely used in

open-source (and potentially other) information systems

can remain undetected for an average of four years.24 The

use of unpatched programming libraries, or those that

contain malicious code, represents a significant risk to the

secure operation of information systems. This observation

is particularly pertinent to FPS if the source code employed

by these applications includes programming libraries that

have not been thoroughly assessed for security risks.

Moreover, it should be noted that cybersecurity assess-

ments are not a simple endeavor. The effectiveness of vul-

nerability assessments, penetration tests, and other cyber

resilience techniques is contingent upon the resources at

hand, and the available community resources may often

be insufficient. For these assessments to be truly effec-

tive, they should ideally be conducted by professionals

with specialized expertise, such as vulnerability assessors,

penetration testers, and red team specialists.

It is also crucial to underscore the importance of hav-

ing these assessments carried out by an independent

party. This is particularly pertinent when the assessor is

an internal member of the organization, as a lack of inde-

pendence and potential conflicts of interest may deter

the assessor from disclosing critical findings. Therefore, to

ensure the integrity and thoroughness of the assessments,

the independence of the assessor must be preserved.

Unsecure coding practices are an additional source of

risk for open-source systems. While these practices may

also affect and represent a challenge for proprietary appli-

cations, unsecure code is especially important in the case

of open-source payment systems. Good programming

includes the ability to produce secure code. If developers

of payment systems lack the skills to code securely or fail

to integrate secure coding practices into their workflow,

the likelihood of creating vulnerable payment applica-

tions rises significantly.

Furthermore, given the need to depend on external

developers to maintain an open-source project, it is possi-

ble for an open-source resource or component to become

out-of-date or irrelevant to user needs. Open-source

projects can be abandoned by their creators, which can

also occur with proprietary software, where commercial

vendors may cease to support a product line, albeit this

risk is lower for operators. Moreover, proprietary software

contracts require escrow of source code to mitigate such

risk. In such cases, the source code is put in custody of a

third-party escrow agent to protect the licensee. But in

both cases, an operator is at risk, as significant resources

and expertise are required to continue maintaining and

updating the source-code packages.

When open-source projects are not actively updated,

components can become increasingly stale and unable

to evolve to meet the constantly changing needs of their

userbase and new security threats; hence, implementa-

tion can become out-of-date/obsolete due to infrequent

updates,25 though this concern is uneven across open

source as a whole. A report by Sonatype, a software sup-

ply-chain manager, noted only 11 percent of surveyed

projects were being actively maintained.26 Per this report,

one in eight open-source software downloads had a

known risk.

As users develop their own codebases, these imple-

mentations may become increasingly customized to spe-

cific circumstances, and their risks may become unknown

to the community of developers, resulting in limited

support or correction of code to ensure the security of

the solution adequately. This concern can be mitigated

in active open-source communities by sharing back

enhancements: these enhancements are then incorpo-

rated into the managed software base of the open-source

project, tested regularly, scanned for vulnerabilities, and

packaged for release—all activities that then need not be

performed by the adopting organization’s staff. When

adopting open-source systems, consider carefully the

value, not just the cost, of sharing enhancements back to

the community.

•	 Maintenance and support: Open-source projects may

have active development communities that address user

concerns on a project level, but no personnel will appear

at a client site to conduct in-person troubleshooting,

which may also be a risk for proprietary solutions lack-

ing a maintenance agreement. As such, institutions must

decide what level of support they are comfortable with,

keeping their capacity constraints in mind and how and

to what degree they will augment their own capacity with

outside experts. Furthermore, as a project undergoes

16  |  Open-Source Technologies in the Context of Fast Payment Systems

more extensive customization, the ability of the commu-

nity to offer maintenance and support may progressively

diminish. An important factor is how well the FPS project

shares enhancements back to the community and then

uses the open-source project to host these enhance-

ments such that they are maintained by the community,

tested, packaged, and released. Fully custom software

must be maintained by the developer that wrote it or by

others that learn it well enough to do so, if the source is

available to them.

For institutions opting for open-source FPS solutions, it

becomes critical to acknowledge the necessity of a dedi-

cated team of system integrators (internal or contracted).

This specialized team is indispensable for proactive main-

tenance, precise troubleshooting, comprehensive security

assessments, and the assurance of the system’s consistent

reliability. Unlike proprietary solutions, which often come

with paid direct vendor support, open-source projects

rely on the institution’s capacity to manage and adapt

the software to evolving needs and challenges, as well as

the availability of open-market experts and system inte-

grators. This team’s role is not just to address immediate

technical issues but also to ensure the long-term sustain-

ability and effectiveness of the FPS solution within the

organization’s specific operational context.

•	 System migration: Entities considering the adoption of

any solution must be aware of not only the initial bene-

fits but also the potential long-term migration costs and

risks associated with transitioning to different solutions

in the future. These risks are inherently present in open-

source projects, due to the possibility of diminished sup-

port from the community or the lack of a comprehensive

open-source support system. But the risks are also present

in, among other things, the face of secondary sanctions

imposed on commercial providers, business dissolution,

or commercial strategy pivots that cause the abandon-

ment of a commercial offering. As mentioned, the escrow

of proprietary software often mitigates part of this issue.

If the software vendor goes out of business, fails to main-

tain the software, or breaches the contract, the licensee

can obtain the source code to maintain and update the

software independently. This can contribute to business

continuity and reduces the risk of software becoming

obsolete or unusable due to vendor issues. However, it

is important to note that accessing the escrowed source

code can also lead to additional costs for the licensee and

that a deep understanding of the software, including

its construction and packaging processes, is required to

update or maintain the source code effectively.

Moreover, analyzing the total cost of ownership of

any system should include potential migration costs.

This analysis needs to account for the time and resources

required to adapt to and integrate new systems, which

can be substantial. However, additional risks warrant care-

ful consideration, including compatibility issues and loss

of customizations and enhancements. The outgoing solu-

tion may have been integrated with other systems or tai-

lored to specific processes within an organization. These

bespoke integrations can result in significant compatibil-

ity challenges during migration to new solutions.

COST IMPLICATIONS ACROSS THE LIFE
CYCLE OF AN FPS

Choosing to adopt open source can have cost benefits for

an institution, though it can lead to new costs as well. The

primary cost savings afforded by an open-source solution

is the lack of a licensing cost. Depending on the software

being used, this savings can be significant. Further, some

open-source projects have a full feature set, allowing insti-

tutions to use components “off the shelf” and without sub-

stantial further modification. However, given the technical

demands of implementing and operating an open-source

project, an institution can end up internalizing the signif-

icant development expense. This is particularly relevant in

the case of costs related to the operation, maintenance, and

upgrade of an open-source solution, particularly when the

solution is not backed by an active and highly skilled com-

munity to support improvements and minimize threats. Bal-

ancing these internal costs, at internal labor rates, should be

compared to the commercial rates for onboarding, training,

updates, and other per-project costs of commercial systems.

It is important to note that when operators evaluate an

open-source solution, they must consider costs that might

not be immediately obvious at the outset but can become

significant for the operator, participants of the FPS, and end

users over time. However, it should be noted that a well-func-

tioning FPS, regardless of its source base, requires constant

tuning and adjustment to evolving circumstances. It is the

fit-to-purpose of the system and its ongoing cost of support

that should be studied carefully.

The hidden costs that could potentially be associated

with all FPS projects also extend to integrating new use

cases, functionalities, and adopting evolving standards. In

the dynamic realm of the payments industry, where new use

cases and standards are continually emerging, incorporating

these advancements into existing systems is a complex and

significant task. In open-source systems, this integration may

Open-Source Technologies in the Context of Fast Payment Systems  |  17

require extensive enhancements that may compel opera-

tors to hire contract assistance or to undertake development

efforts in-house themselves and may lead to incremental

costs on the operator’s side. This aspect of platform evolu-

tion to meet the emerging needs of an FPS operator is par-

ticularly critical in the context of FPS functioning as a digital

public infrastructure (DPI).27 As a DPI, an FPS is expected to

play a pivotal and cross-sectoral role, leading the charge in

assimilating innovations into the broader digital ecosystem,

which increases the pressure on the operators to anticipate

and integrate innovations into an FPS.

As for cost-benefit analysis, no widely acknowledged

framework applies to open-source projects. However, a con-

cept that can aid cost-benefit analysis of open-source tech-

nologies is calculating the total cost of ownership (TCO). In

the context of software, TCO is an estimate of an organiza-

tion’s overall expected spend to purchase, configure, install,

use, monitor, maintain, optimize, and retire a technological

component. In the context of open source, such a calcula-

tion would involve assessing not just the initial acquisition

cost, which is often low or zero, compared to proprietary

software, but also the long-term expenses associated with

its deployment, maintenance, and operation. This includes

costs for legal check, compliance management, support,

training, integration with existing systems, potential cus-

tomization, updates, and security measures, and the cost to

financial institutions of onboarding the technology to the

FPS and maintaining its use.

However, open-source software also presents unique cost

dynamics and potential benefits that are not as easily quan-

tified and that go beyond the TCO calculation. For a 2023

study on the economic impact of open-source software, the

Linux Foundation surveyed 431 executives, including CEOs

and CTOs from Fortune 500 companies, providing a granu-

lar look at how organizations perceive the value derived from

open-source adoption.28

Survey respondents acknowledged multiple components

when evaluating the benefits of open-source software,

including its impact on TCO. Their responses are summa-

rized in table 1.

In the context of FPS, the Mojaloop Foundation has col-

laborated with Glenbrook Partners to create an estimator

designed to assess and compare the fundamental business

propositions of various FPS platform configurations. This

estimator evaluates the financial and operational nuances

of four implementation approaches: solutions acquired

through vendor licenses, those developed by in-house

teams, and two variations of the Mojaloop platform. The first

Mojaloop variation integrates Mojaloop’s open-source soft-

ware capabilities supplemented with components licensed

from vendors for non-open-source requirements. The sec-

ond variation also capitalizes on Mojaloop’s strengths but

opts for custom-built, non-open-source components crafted

by internal development teams. This estimator seeks to elu-

cidate two critical aspects: the comparative financial impli-

cations—encompassing development, implementation, and

MEDIUM TO NO BENEFIT HIGH TO VERY HIGH BENEFIT

•	 Attractiveness of IT work environment: 50.72% reported
medium to no benefit.

•	 Active community for knowledge exchange: 41.15%
reported medium to no benefit.

•	 Faster development speed: 34.45% reported medium to no
benefit.

•	 High security of software: 66.83% reported medium to no
benefit.

•	 High stability, low error susceptibility in open-source soft-
ware code: 64.43% reported medium to no benefit.

•	 Cost savings (lower TCO): 33.5% reported medium to no
benefit.

•	 Additional revenue opportunities/access to new markets:
73.21% reported medium to no benefit.

•	 Independence from proprietary providers: 45.45% reported
medium to no benefit.

•	 Open standards and interoperability: 36.84% reported
medium to no benefit.

•	 Strong support from providers of open-source software:
73.68% reported medium to no benefit.

•	 Attractiveness of IT work environment: 49.29% reported
high to very high benefit.

•	 Active community for knowledge exchange: 58.85%
reported high to very high benefit.

•	 Faster development speed: 65.55% reported high to very
high benefit.

•	 High security of software: 33.17% reported high to very
high benefit.

•	 High stability, low error susceptibility in open-source soft-
ware code: 35.57% reported high to very high benefit.

•	 Cost savings (lower TCO): 66.51% reported high to very
high benefit.

•	 Additional revenue opportunities/access to new markets:
26.79% reported high to very high benefit.

•	 Independence from proprietary providers: 54.54% reported
high to very high benefit.

•	 Open standards and interoperability: 63.16% reported high
to very high benefit.

•	 Strong support from providers of open-source software:
26.32% reported high to very high benefit.

 TABLE 1    Linux foundation—Survey responses

18  |  Open-Source Technologies in the Context of Fast Payment Systems

ongoing operational costs—of each FPS platform approach,

and the time-to-market efficiency inherent in each imple-

mentation choice.

MATURITY OF AN ORGANIZATION TO
LEVERAGE OPEN SOURCE

Implementing an FPS with open-source technologies

demands robust operational and technological capabilities

alongside vigilant management of the potential risks asso-

ciated with these deployments. While a universally accepted

model to gauge an entity’s readiness for open-source adop-

tion has yet to be established, there are initiatives aimed at

creating frameworks to evaluate an organization’s capability

to manage and contribute to open-source projects effectively.

The TODO Group, a subfoundation of the Linux Founda-

tion, introduced the concept of the open source program

office (OSPO) to provide guidance on how organizations

can formulate and implement their open-source strategies.

An OSPO serves as a central point within an organization,

responsible for establishing policies for using open-source

and third-party components, ensuring license compliance,

addressing legal considerations, and promoting commu-

nity involvement and contributions. Furthermore, the TODO

Group has outlined the five-stage OSPO Maturity Model,

which describes an organization’s journey from informal

open-source use to integrating open-source strategies into

core organizational decision-making processes. This model

progresses from ad hoc adoption, through compliance and

education, community engagement, and project leadership,

to a phase in which the OSPO plays a crucial role in shaping

the organization’s technological direction.29

Similarly, the Open-Source Maturity Model crafted by

FINOS and Wipro is specifically designed for the banking

and financial sectors. It provides a framework for these

institutions to evaluate their current open-source usage and

develop strategies to enhance their open-source engage-

ment. The model identifies five levels of maturity, start-

ing from ad hoc, informal open-source usage to a stage

in which open-source management is deeply embedded

in the strategic and operational fabric of the organization,

highlighting a commitment to ongoing improvement,

active community participation, and leadership in the

open-source ecosystem.30

LESSONS LEARNED

Open source in payments is still a growing space.

There is increasing interest from operators in the benefits

that open source can bring to payments, including FPS.

Mojaloop is one example that operators have just begun to

assess actively. However, FPS do leverage open-source com-

ponents, especially when it comes to external software and

components such as cloud architecture, as the Central Bank

of Brazil has shown with Pix.

Consider the following key factors before
leveraging open source for FPS.

Before deciding to leverage open source to implement an

FPS, institutions must carefully evaluate several factors that

affect the entire life cycle of the system, from design and

conceptualization to operation and long-term sustainabil-

ity. The decision to use open-source or proprietary solutions

involves balancing benefits such as flexibility and cost sav-

ings against challenges such as security risks, operational

capacity, and regulatory compliance. The following factors

are key aspects that institutions need to address when

deciding how best to integrate open-source technologies

within their FPS:

•	 Design and conceptualization

	– Requirement alignment: Ensuring that open-source

solutions meet the functional, business, and security

needs of the FPS is crucial. Institutions must confirm

that these solutions align with current and future re-

quirements, and open-source projects should adhere

to open standards, such as ISO 20022, for seamless

interoperability.

6
	– Regulatory and legal implications: Open-source

solutions must comply with local and international

regulations. Institutions must also carefully navigate

intellectual property issues and open-source licens-

ing to avoid unwanted disclosure of proprietary en-

hancements.

	– Security by design: Incorporating secure design

principles from the beginning of the project is es-

sential to mitigate cyber risks.

•	 Implementation

	– Adaptability: Open-source solutions offer customi-

zation but require significant expertise for them to

be tailored to institutional needs, which can intro-

duce security vulnerabilities if not handled properly.

Proper documentation is key to managing the com-

plexity of the implementation.

	– Capacity: Institutions need strong internal technical

capabilities or vendor support to implement open-

source FPS effectively. This includes building a dedi-

cated team of system integrators to ensure seamless

customization and security updates.

	– Customization versus vendor lock-in: Open-source

solutions reduce vendor lock-in, but a lack of ven-

dors for specific components may increase costs and

lengthen timelines.

	– Secure integration: Operators should treat open

source with the same rigor as proprietary code by

selecting pre-vetted components, conducting initial

and ongoing vulnerability assessments using soft-

  |  19

20  |  Open-Source Technologies in the Context of Fast Payment Systems

ware composition analysis tools, and performing reg-

ular scans during the development and build stages.

•	 Operation

	– Security: While open-source solutions allow for code

review and collective security checks, vulnerabilities

can still remain undetected for years. Regular vulnera-

bility assessments and third-party audits are essential.

	– Maintenance and support: Institutions must ensure

that they have the internal capacity to maintain and

troubleshoot open-source solutions, as they do not

come with the same level of vendor support as pro-

prietary solutions.

	– Strength and expertise of the open-source commu-

nity: A highly active and skilled community ensures

ongoing support, timely updates, and rapid respons-

es to security issues. However, if the community lacks

sufficient expertise or is inactive, slower updates,

unresolved problems, and increased risks for the FPS

may be the result.

	– System migration: Open-source solutions must con-

sider long-term migration costs, including compati-

bility issues and the potential loss of customizations

when transitioning to new systems.

	– Monitoring: It is essential to stay updated on open-

source components and monitor for vulnerabilities,

promptly updating or replacing unsupported com-

ponents. Additionally, implementing a software bill

of materials enhances transparency, documents com-

ponent origins, and aids in managing vulnerabilities,

reflecting a commitment to secure software-devel-

opment practices throughout the software life cycle.

•	 Maturity of an organization to leverage open source

	– Operational readiness: Implementing open-source

FPS requires robust operational and technological ca-

pabilities, and institutions need to manage potential

risks. This requires a full assessment of the capacity

of internal as well as available external resources, such

as system integrators, to ensure seamless integration,

ongoing support, and effective risk mitigation.

	– Maturity models: Tools such as maturity models

can help operators assess and develop their ability

to manage and contribute to open-source projects,

enhancing strategic and operational alignment with

open-source practices.

•	 Cost implications across the life cycle of an FPS

	– Total cost of ownership: Open-source solutions can

reduce initial costs by eliminating licensing fees but

may increase internal development and operational

expenses. A full TCO analysis, including future main-

tenance, security, and migration costs, is necessary.

	– Hidden costs: The costs of integrating new function-

alities, adhering to evolving standards, and adapting

to new use cases must be considered. FPS as a DPI

increases the pressure for continual innovation and

resilience.

Choosing open-source technologies requires
embracing a long-term vision and clearly
assessing the capacity of the organization to
adopt them.

It is crucial for any institution implementing an FPS to ensure

that its long-term vision and goals for future enhancements

align with the open-source solutions it chooses to adopt.

And while this is also true for commercial solutions, this stra-

tegic alignment is a key factor in successful FPS development

and should not be ignored when considering open-source

solutions. This alignment plays a crucial role in the successful

development of the FPS. When making decisions, institu-

tions should appropriately weight the long-term adaptabil-

ity and scalability of the solution, rather than overweight its

immediate simplicity or ease of use.

It is important to consider how open-source solutions

might affect or restrict future development possibilities. The

chosen technology should not only meet current needs but

also be adaptable to future requirements and enhancements.

Adopting a long-term vision will help to avoid situations where

initial convenience leads to later roadblocks in development,

necessitating costly and time-consuming modifications or

even complete system overhauls. The European Commission

provides an example of taking a holistic approach toward

assessing the adoption of open source (box 7).

Operators and regulators must assess the
potential risks of open-source technologies not
only for the FPS but for the broader payments
ecosystem.

Like other technological options, open-source technology

in FPS carries risks, in particular cyber and operational risks.

A key factor to assess is whether open-source software

can expose vulnerabilities to a broader audience, including

potential attackers. These risks should be weighed against

the capacity of the community to contribute to security

updates and fixes.

Another risk involves the integration and compatibility

with existing technological infrastructure. Open-source solu-

tions might not always integrate seamlessly with other com-

Open-Source Technologies in the Context of Fast Payment Systems  |  21

ponents within an institution’s technology stack, leading to

additional challenges and costs in implementation.

Moreover, the evolving nature of open-source projects,

with the possibility of them becoming outdated or aban-

doned, can pose operational risks, necessitating continuous

monitoring and potential contingency planning.

Considering the critical role of FPS, including as DPIs,

it is relevant for regulators to adopt a proactive approach

toward the review of technologies underlying FPS. As men-

tioned above, if the operation of the FPS is critical for the

overall functioning of the economy, the FPS may need to be

included in national critical infrastructure. Additionally, the

participation of FPS operators and service providers in cyber

risk information–sharing platforms and public-private part-

nerships may prove to be vitally important. This is especially

true when the exchange of information is needed to prepare

for potentially adverse cyber events and to foster timely inci-

dent response and recovery from cyber incidents. The afore-

mentioned process is essential in identifying and effectively

mitigating the outlined risks.

Another relevant aspect of risk refers to the adoption

of proprietary components with open-source peripherals.

It is possible that vulnerabilities that remain undetected

within proprietary components may become exposed and

exploited in unexpected ways through a combination with

open source. In this case, critical systems that are proprietary,

which themselves may have undetected vulnerabilities, can

be further exposed by threats affecting an open-source

component used for developing, operating, or maintaining

a proprietary software. A recent example illustrating these

risks is the Log4Shell vulnerability discovered in Apache

Log4j (box 8).

At the same time, there can be reverse cases in which sta-

ble, secure, open-source software systems can be affected by

security vulnerabilities in the underlying commercial operat-

ing platform, with vulnerabilities in commercial systems also

passing undiscovered and unmitigated. The key learning is

that the full software system and its operating environment

must be considered, not just the individual components.

Another critical element is the implementation of a pro-

active strategy for monitoring existing risks in software sup-

ply chains. Following the example of the Log4j vulnerability,

as of September 2023 a quarter of Log4j downloads were

still of its vulnerable version. The Cyber Safety Review Board’s

The European Commission’s Open Source Software

Strategy 2020–2023 outlines the organization’s com-

mitment to leveraging open-source principles to

enhance digital transformation across Europe. The

strategy outlines the following principles regarding the

adoption of open source:

•	 Open-source solutions will be preferred when equiv-

alent in functionalities, total cost, and cybersecurity.

•	 We harness the working principles of open source; we

innovate and cocreate, share and reuse, and together

build user-centric, data-driven public services.

•	 We share our code and enable incidental contribu-

tions to related open-source projects.

•	 We strive to be an active member of the diverse

open-source ecosystem.

•	 We make sure the code we use and the code we

share is free from vulnerabilities by applying contin-

uous security testing.

•	 We promote open standards and specifications that

are implemented and distributed in open source.

BOX 7   EUROPEAN COMMISSIONS’ OPEN SOURCE SOFTWARE STRATEGY31

Apache Log4j is a widely utilized open-source

logging framework supported by the Apache

Software Foundation. Log4j is integral in data-log-

ging processes across various applications and

enterprise software systems, including both open-

source and commercial systems. This critical vul-

nerability, when exploited, permitted attackers

to inject malware, thereby gaining the ability to

manipulate core elements of the targeted software

and extract sensitive information. This undetected

vulnerability had been present since 2013 and

came to light and was subsequently addressed

only in December 2021.32

BOX 8   APACHE’S LOG4J INCIDENT

22  |  Open-Source Technologies in the Context of Fast Payment Systems

rity changes visible before official patches are released. This

requires concurrent advisories and community responses to

reduce the risk of malicious exploitation during the interim

period (box 9).34

In sum, several steps can be taken to reduce cyber risk that

stems from open-source FPS and other critical IT components

used by the financial sector. Organizations that develop or uti-

lize open-source information systems should employ secure

design principles in the creation and implementation of pay-

ment systems. The source code used for these systems must

be thoroughly evaluated and assessed for security issues. In

addition to source-code reviews, conducting vulnerability

scans, comprehensive penetration testing, and information

system audits can be crucial for assessing the cybersecurity

of FPS. At a minimum, an information system audit should be

conducted by an independent assessor and encompass areas

such as business continuity, resilience of critical business pro-

cesses, access risks, and data accuracy, including the integrity

of payment and transaction-related data.

report Review of the December 2021 Log4j Event33 under-

scores the critical role of open-source software in the digital

ecosystem, given its widespread integration across numer-

ous software components. However, it also highlights a sig-

nificant challenge: the teams behind Log4j and the Apache

Software Foundation, like many open-source projects, lack

comprehensive oversight of the usage and application of

their software. This means that the lack of control and over-

sight of open-source components must be addressed by a

comprehensive analysis of such components before inte-

gration, as well as by a proactive strategy for monitoring

evolving vulnerabilities and the overall landscape in which

the component is deployed. Moreover, the board’s report

highlights challenges in maintaining open-source projects

such as Log4j, which often lack dedicated security resources

throughout the software-development life cycle.

Many open-source projects do not have coordinated

teams for vulnerability disclosure and response to investigate

and resolve reported issues. Furthermore, open-source proj-

ects usually develop code in a public manner, making secu-

The 2024 Open-Source Security and Risk Analysis

Report35 reveals that open-source components are

prevalent in 96 percent of 1,067 codebases examined.

A significant 84 percent of these codebases contain

vulnerabilities; 74 percent face high-risk vulnerabili-

ties, and 91 percent of the codebases use components

that are outdated by 10 or more versions. In the finan-

cial and fintech sectors, the reliance on open source is

high: 99 percent of codebases incorporate open-source

elements, and 73 percent of these contain high-risk

vulnerabilities. To enhance security, the report recom-

mends the following measures:

•	 Integrate open-source components into the secure

build process, treating them with the same rigor as

proprietary code. This involves selecting pre-vetted

components from an internal repository, conduct-

ing initial vulnerability assessments using software

composition analysis tools, and performing ongoing

scans during the development and build stages.

•	 Keep abreast of updates to open-source components

and monitor for vulnerabilities. Upon detection of a

vulnerability, it is crucial to evaluate the software to

determine the extent of the component’s usage and

update it promptly. If the component is no longer

supported, it is advisable to consider alternatives.

•	 Implement a software bill of materials. This is a

detailed record that outlines the components and

their supply-chain relationships within the software.

It enhances transparency, documents the origin of

components, and is instrumental in managing vul-

nerabilities. The presence of a software bill of mate-

rials may also reflect a supplier’s commitment to

secure software-development practices throughout

the software life cycle.

BOX 9   VULNERABILITIES FOUND ACROSS OPEN-SOURCE CODEBASES

CONCLUSIONS

Open-source technologies provide a distinct competitive

advantage to FPS operators, compared to proprietary solu-

tions. The most obvious benefit is the reduced cost of licens-

ing. Additionally, open-source solutions offer greater flexibility

and, hence, can be a viable mechanism for insourced proj-

ects and benefit from community support, especially when

the community is active and thriving. However, leveraging

open-source solutions for FPS is a complex decision that

needs strategic consideration and alignment. Institutions

must weigh the pros and cons of integrating open-source

components in their FPS across the entire life cycle, including

procurement, implementation, and operation.

Across the FPS life cycle, cost implications can be a major

factor. Open-source solutions can save licensing costs, but

calculations need to account for additional costs, including

internal development and operational expenses, as well as

costs associated with maintaining security, managing com-

pliance, minimizing legal risks, integrating new functional-

ities, and keeping pace with evolving standards.

Institutions implementing FPS must align their decision

with a long-term, forward-looking vision, ensuring that the

chosen technology, be it open source or proprietary, not

only satisfies medium-term requirements but is also capable

of evolving to meet future demands. This is vital to ensure

that the technology not only meets current needs but is

adaptable to future enhancements, thus avoiding potential

development roadblocks. A thorough cost-benefit analy-

7
sis is essential, as open-source technologies, while offering

cost savings and customizability, come with their own set of

challenges. These include the need for significant in-house

expertise, security risks, regulatory compliance, and intellec-

tual property considerations. Another critical aspect of this

decision-making process involves a thorough evaluation of

the expertise, capacity, and level of support existing within

the FPS operator and provided by the community back-

ing open-source projects. This assessment is complex. The

dynamics and capabilities of open-source communities vary

significantly, as these depend on a more collaborative con-

tribution and support, which can lead to varying degrees of

responsiveness and expertise availability.

Indistinct of the technology, to ensure the robust and

resilient operation of an FPS, it is crucial to anticipate and

mitigate future risks associated with the software used to

run it. This involves assessing the system’s and the oper-

ator’s operational and technical capacity against various

challenges, including scalability, flexibility, and a range of

risks—operational, cybersecurity, regulatory, and market-re-

lated. Addressing these scenarios will necessitate augment-

ing institutional capacity, and the operator must develop a

tailored solution that combines resource allocation, strategic

partnerships, and employee training programs.

Finally, the increasing critical role of FPS, including as DPIs,

requires a proactive approach from regulators in reviewing

their underlying technologies to mitigate risks effectively.

  |  23

ACKNOWLEDGMENTS

Organization Contributor

World Bank Guillermo Galicia Rabadan (primary)

Amar Kakirde (primary)

Harish Natarajan

Holti Banka

Nilima Ramteke

Thomas Piveteau

Andrea Monteleone

Kiyotaka Tanaka

The authors would like to thank Ghislain de Salins, Goran Vranic,
Hunt La Cascia (all World Bank), for their valuable comments during
the peer reviewing process.

24  | 

8

  |  25

APPENDIX A

SPECIFIC COMPONENTS OF AN FPS

An FPS accounts for the following technical and functional

components:

•	 Management, clearing, and settlement: An FPS inte-

grates diverse clearing and settlement models that are

adaptable to various schedules and participation models

across a range of use cases. It can also integrate liquid-

ity-management tools, including but not limited to the

establishment and monitoring of liquidity caps and limits.

•	 Core transactions and use cases: An FPS should be

capable of handling different types of transactions,

including instant credit and debit transfers, requests to

pay, recalls/returns of funds, account verifications, inves-

tigations, proxies, and requests for information. Moreover,

the system should be capable of being deployed across

different use cases, including person-to-person transac-

tions, government payments, merchant payments, and

bulk payments.

•	 Participation: An FPS can address diverse participation

models, including direct participants, indirect partici-

pants, transaction initiators, proxy-lookup participants,

and third-party service providers.

•	 Risk management: An FPS is capable of integrating

risk-management policies and enables monitoring and

responding to a variety of risks, including financial risks,

such as credit and liquidity risk. Moreover, it can integrate

a fraud-detection and -prevention component, balanc-

ing rapid processing for immediate fund availability and

detailed scrutiny to minimize fraud risk throughout the

payment life cycle.

•	 Operational and cyber resilience: An FPS should be

capable of meeting minimum cybersecurity standards

and should include business-continuity and disaster-re-

covery plans. High availability is key, with robust recovery

mechanisms that prevent issues such as data duplication

or loss.

•	 Scalability: The system should handle significant in-

creases in participants, transaction volumes, and diverse

use cases efficiently.

•	 Interoperability: An FPS must be designed for seamless

interoperability among payment service providers, facil-

itating communication and functionality across various

payment products. It must be adaptable to current and

future use cases in the payment ecosystem.

•	 Access channels: An FPS must facilitate access to core

functionalities through various channels, including USSD,

SMS, internet and mobile banking solutions, wallets, NFC,

and QR codes.

  |  26

APPENDIX B

COMPONENTS OF AN OPEN-SOURCE SOLUTION AND ECOSYSTEM

IMPLEMENTING AND MAINTAINING AN OPEN-SOURCE
PROJECT

Implementing an open-source project, given its inherently

do-it-yourself nature, requires significant effort and coordi-

nation. While the literature on adopting open-source soft-

ware in the context of a fast payment organization is limited,

the broader question of implementing open source is well

explored.

Engaging in an open-source project can start from two

places: building internally or joining an existing project. In

some cases, it may make sense for an organization to start

a completely new open-source project. If a given need—in

this case, fast payments—is not addressed in the broader

market, an organization may choose to build internally.

Such an organization can then invite other organizations

to join the project and contribute to the community. This

is a resource-intensive path and can add complexity to the

already complex process of developing a project internally—

that is, instead of simply managing organization-specific

stakeholders, the project-governance model would need

to address the concerns of other community members. Of

course, this approach has benefits, since community mem-

bers can provide expertise and resources to assist in the

development of a given project.

Joining an existing project is easier and faster than start-

ing one but comes with its own challenges. Given that the

organization is joining an existing community, it needs to

evaluate that community on several characteristics, including

but not limited to the following:

•	 Leadership and governance

	– An institution choosing to join an existing communi-

ty should become comfortable with the governance

structure of the open-source community it is joining.

If the institution intends to be a major contributor to

the project, it should ensure that its views are repre-

sented in the governance structure.

•	 Relevance of underlying software

	– The project the institution is joining should be rele-

vant to the needs of the institution.

•	 Mission and vision

	– A joining institution should ensure that the mission

and vision of the open-source project do not conflict

with its own mission and vision.

•	 Value alignment

	– A joining institution should ensure that its values are

in line with those of the open-source project com-

munity.

•	 Communication channels and style

	– Depending on the need and desire for communi-

cation, a joining institution should ensure that the

open-source project is able to meet those needs.

•	 Maturity

	– A joining institution should make sure that the open-

source organization is appropriately mature to handle

the needs of the institution.

26  | 

Open-Source Technologies in the Context of Fast Payment Systems  |  27

•	 Licensing models

	– The licensing model should be suitable to the use

cases of the joining institution, and the open-source

project should actively manage the inbound licenses

of dependencies used in the project for compatibili-

ty with its outbound license. Some projects have co-

pyleft provisions that require all development arising

from the initial open-source project also to be open

source, which can be challenging for institutions.

The depth of this diligence can vary, depending on the

level of involvement the organization wants to have in the

project. However, given the benefits of collaboration that

are offered through open-source projects, it makes sense

to leverage the benefits of the project’s open-source com-

munity. Once this diligence is completed, the organization

can then proceed to join the community and adopt any

community requirements that may exist.

Along with this process, an organization may need to

adjust internal resources and policies to enable implementa-

tion and participation in the community. Such adjustments

may include internal governance changes, establishing

a point of contact, establishing dedicated development

teams, implementing training on the use/interaction with

the new project, and more. Identifying a rapporteur and

key point of contact for the open-source community may

assist the flow of communication between in-house and

community stakeholders.

A key decision that the organization will need to make is

how to implement new project releases. This entails several

things. Bearing in mind the project’s own release schedule,

the organization will need to develop a road map for its

own use. Often, open-source projects will not deliver exactly

what a given organization needs in its design, planned or

otherwise. As a result, organizations will need to insert the

development of its own features into such an organiza-

tion-specific road map. Furthermore, while organizations

can leverage testing done by the open-source project, if

it exists, it often makes sense to conduct this internally as

well. And the prestaging of community-released updates in

a preproduction environment enables the safe observation

of the new releases before opening to production traffic.

All of this is resource intensive, compared to leveraging

a closed-source solution. The size of costs and their timing

may be quite different in these two approaches and require

a business analysis.

To summarize the institutional structures and consider-

ations that must be addressed, organizations should take

the following steps:

•	 Establish a governance system for its projects

•	 Ensure the appropriate level of expertise for develop-

ment through training, hiring, or outsourcing

•	 Establish a road map for releases

•	 Determine the level of engagement with the open-source

community

•	 Implement the infrastructural requirements for the proj-

ect; in the context of payments, this includes data cen-

ters, servers, and hosting environments

  |  28

APPENDIX C

SECURE DESIGN PRINCIPLES

The U.S. National Centers of Academic Excellence in Cyber-

security list the baseline security principles that should be

followed for developing relevant protection mechanisms for

information systems.36 The principles apply to both open and

proprietary information systems, including payment systems.

Economy of mechanism: Economy of mechanism refers to

the fact that security measures, such as control mechanisms

that are designed and implemented in both hardware and

software, should be as simple and small as possible. Sim-

ple and small designs are usually easier to test and verify in

detail. When the security design is complex or difficult to

understand, there are more opportunities for an adversary to

discover subtle weaknesses to exploit that may be difficult to

identify in advance. In general, the more complex the secu-

rity mechanism, the higher the probability (likelihood) that

the mechanism may have security flaws and vulnerabilities.

Again, simpler mechanisms are likely to have less exploit-

able weaknesses and require less maintenance. In addition,

because configuration-management issues are simplified,

updating or replacing a simple mechanism becomes a less

intensive process. In practice, this is one of the most chal-

lenging principles to implement. In most organizations,

there is a constant demand for new features in both hard-

ware and software, which complicates the security-design

task. The best that can be done is to keep this principle in

mind during system design, to try to eliminate unnecessary

complexity.

Fail-safe default: The fail-safe default implies that access

decisions need to be based on permission, as opposed to

exclusion. This means that the default situation should be

a lack of access, and where the protection scheme of the

organization identifies the conditions necessary for access to

be granted. This approach is characterized by a better failure

mode than its alternative, which grants access even in cases

when something might go wrong. A design or implementa-

tion mistake in a mechanism that gives explicit permission

tends to fail by refusing permission, a safe situation that can

be quickly detected. On the other hand, a design or imple-

mentation mistake in a mechanism that explicitly excludes

access tends to fail by allowing access, a failure that may long

go unnoticed in normal use. For example, most file-access

systems work on this principle, and all protected services on

client/server systems work this way.

Complete mediation: This component refers to the fact

that every access must be checked against the access-con-

trol mechanism. Systems should not rely on access decisions

retrieved from a cache. In a system designed to operate con-

tinuously, this principle requires that, if access decisions are

remembered for future use, careful consideration should be

given to how changes in authority are propagated into such

local memories. File-access systems provide an example of a

system that complies with this principle. However, typically,

once a user has opened a file, no check is made to see if per-

missions change. To fully implement complete mediation,

every time a user reads a field or record in a file, or a data

item in a database, the system must exercise access control.

This resource-intensive approach is rarely used.

Open design: The idea behind open design is that the

Open-Source Technologies in the Context of Fast Payment Systems  |  29

security mechanism should be open, instead of secret.

For example, when looking at the way encryption may be

implemented, while the encryption keys that are used to

encrypt data need to remain secret, the encryption algo-

rithm that is used should be open to scrutiny and review by

outside experts.

Separation of privilege: Separation privilege is frequently

defined as a practice that includes the use of several priv-

ilege attributes that are needed to achieve access to a

restricted resource. Day-to-day operations are executed

in a lower privileged-access regime. A prime example of

separation of privilege includes two-factor authentication.

Multifactor authentication requires several (at least two)

authentication techniques, such as a password and bio-

metrics, to authorize a user. Separation of privilege can also

be used to refer to any task that is divided based on spe-

cific privileges. For example, administrative tasks may be

restricted to a separate account, while everyday activities

are conducted with low-privilege accounts.

Least privilege: The concept of least privilege is associated

with the idea that every process or task and every user of a

specific system should function with the least set of privileges

that are necessary to conduct the task. Role-based access

control is an access-control principle and method based on

the concept of least privilege. Each role is assigned only the

permissions that are needed to perform specific tasks.

Least common mechanism: The idea of the least common

mechanism refers to the fact that the design should min-

imize the functions that are shared by different users, the

end result of which is to provide mutual security. The princi-

ple helps reduce the number of unintended communication

paths and reduces the amount of hardware and software on

which all users depend, making it easier to verify if there are

any undesirable security implications.

Psychological acceptability: One of the most important

concepts of a secure design is psychological acceptability.

This means that the control mechanisms that are imple-

mented should not interfere excessively with the everyday

operations of users and the organization itself. The mech-

anisms implemented should not hinder the organization’s

functioning. If the internal control mechanisms are deemed

excessive and unusable by the staff, employees might

choose to ignore the controls wherever this might be possi-

ble. As a result, the cyber risk associated with such practices

might increase. It is also worth noting that the implemented

security controls should make sense to the employees and

fit the mental model of the users. In short, these mecha-

nisms should not be too burdensome. In addition, if the con-

trol mechanisms do not make sense to the employees, the

chance of making mistakes also increases.

Isolation: The concept of isolation has three parts. In gen-

eral, public access systems should be isolated from the more

sensitive or critical systems that contain sensitive data, pro-

cesses, or other assets of the fast payment service operator

or service provider. For some of the more sensitive informa-

tion systems and assets, physical isolation of the critical sys-

tems may be considered. In other cases, a defense-in-depth

approach, using logical security controls, may be imple-

mented. The second aspect of isolation refers to the fact

that processes and files of individual users should be isolated

from one another except where access is specifically needed.

All modern operating systems offer the capability to provide

separate space for individual users, with relevant protection

mechanisms for the prevention of unauthorized access. The

third component of isolation deals with the need to isolate

security mechanisms, such as internal controls, in such a way

that prevents unauthorized access to the security controls.

Encapsulation: Encapsulation is typically a form (subset of

isolation) that is founded on object-oriented functionality.

Security is provided by encapsulating or enclosing a col-

lection of procedures as well as data objects in a separate

domain in such a way that the internal structure of a data

object is accessible only to the procedures of the protected

subsystem and the procedures may be called only at desig-

nated entry points.

Modularity: The use of modular architecture is one of the

key components of secure design. This principle implies the

use and adoption of a modular architecture and the devel-

opment of security functions as separate, protected mod-

ules. For example, functions associated with the encryption

of data and information should use common security mod-

ules or services. Security modules should be portable to

newer technologies in an easy manner without too much

(excessive) effort.

Layering: As noted in some of the previous guidance, oper-

ational risk stems from people, processes, systems, and

external events. Security controls (that is, internal control

mechanisms) should be developed to ensure a defense-

in-depth approach. This applies to, among other things,

payment system processes. Control mechanisms should

be designed and implemented to ensure overlapping pro-

tection addressing the operational risk factors mentioned

above. This means that if one control mechanism fails, there

are other overlapping controls that will not leave the system

unprotected.

30  |  Open-Source Technologies in the Context of Fast Payment Systems

  |  30

ENDNOTES

1.	 https://www.hbs.edu/faculty/Pages/item.
aspx?num=65230

2.	 Specifics of the technical components of an FPS are
included in annex A.

3.	 Considerations and Lessons for the Development and
Implementation of FPS, World Bank, 2021.

4.	 Ibid.
5.	 Encyclopedia by Kaspersky. n.d. “Closed-Source

Software (Proprietary Software)”, https://encyclopedia.
kaspersky.com/glossary/closed-source/

6.	 Open-source licenses are categorized into two main
types: copyleft and permissive. Copyleft licenses, such
as the GNU General Public License (GPL), allow the
modification or customization of software, but they
require that any modifications also be distributed
under the same license, ensuring that the software
remains open source. Permissive licenses, such as the
MIT License or Apache License, permit the use and
modification of open-source software with fewer
restrictions. Unlike copyleft licenses, they do not require
the distribution of modified source code.

7.	 St. Laurent, Andrew M, Understanding Open-Source

and Free Software Licensing (Sebastopol, CA:
O’Reilly Media, 2008), 4.

8.	 FINOS. 2022. The 2022 State of Open Source in
Financial Services, https://www.finos.org/hubfs/FINOS_
Report_010323.pdf.

9.	 Microsoft Open Source. n.d. “Our Program,” https://
opensource.microsoft.com/program/.

10.	Brewer, Eric, and Abhishek Arya. 2022. “Shared
Success in Building a Safer Open Source Community.”
The Keyword, May 12, 2022, https://blog.google/
technology/safety-security/shared-success-in-building-
a-safer-open-source-community/#:~:text=Since%20
under%2Dmaintained%2C%20critical%20open,of%20
critical%20open%20source%20projects.

11.	 Zimmerman, Evan J. 2024. “Privatized Open Source.”

CMR Insights, June 24, 2020, https://cmr.berkeley.

edu/2020/06/privatized-open-source-software/
12.	Strange, Angela. 2021. “Open Source Is Finally Coming

to Financial Services.” Andreesen Horowitz, October

15, 2021, https://a16z.com/open-source-is-finally-

coming-to-financial-services/.
13.	 In the context of payment systems, open-loop systems

refer to payment networks that allow transactions to be
processed across multiple institutions, enabling users to
use their payment instruments and transaction accounts
at a wide range of merchants and access points
domestically or internationally.

14.	 Interledger: https://interledger.org/case-studies/

making-digital-payments-affordable-and-simple-

for-everyone-everywhere/{~?~URL

15.	 Bandura, Romina, and Ramanujam, Sundar R. 2021.
Developing Inclusive Digital Payment Systems. Center
for Strategic and International Studies, https://www.jstor.
org/stable/pdf/resrep35090.pdf.

16.	Helms, John. 2023. “10 Open-Source Software Security
Risks.” ConnectWise, September 27, 2023, https://www.
connectwise.com/blog/cybersecurity/open-source-
software-risks.

17.	 Mint. 2022. “NPCI Announces BHIM App Open-Source
License Model.” Mint, November 9, 2022, https://www.
livemint.com/industry/banking/npci-announces-bhim-
app-open-source-license-model-11668001560218.html.

18.	https://b2b.mastercard.com/news-and-insights/success-
story/modernizing-latin-american-payments/

19.	https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
20.	https://www.gnu.org/licenses/gpl-faq.

html#GPLRequireSourcePostedPublic
21.	 https://documents1.worldbank.org/curated/

en/672901582561140400/pdf/Open-Source-for-Global-
Public-Goods.pdf

22.	Stallings, W., and L. Brown. 2014. Computer Security:
Principles and Practice, 3rd ed. Upper Saddle River, NJ:
Pearson Prentice Hall.

23.	Google Open Source. n.d. “Why Open Source?,” https://
opensource.google/documentation/reference/why.

24.	https://www.cpomagazine.com/cyber-security/open-
source-vulnerabilities-take-four-years-to-spot-says-
github/

25.	PYMNTS. 2017. “When Open Source Opens the Door for
Cybersecurity Risks.” PYMNTS, April 21, 2017, https://
www.pymnts.com/news/b2b-payments/2017/black-
duck-open-source-security-cybersecurity-license-
software-enterprise-app/.

26.	Krill, Paul. 2023. “Report Finds Few Open Source
Projects Actively Maintained.” InfoWorld, October 12,
2023, https://www.infoworld.com/article/3708630/
report-finds-few-open-source-projects-actively-
maintained.html.

27.	 DPIs, generally understood as interoperable, open, and
inclusive systems supported by technology to provide
essential, societywide, public and private services, can
play a critical role in accelerating this transformation in
an inclusive way.

28.	https://project.linuxfoundation.org/hubfs/LF%20
Research/Measuring%20the%20Economic%20
Value%20of%20Open%20Source%20-%20Report.
pdf?hsLang=en

29.	https://todogroup.org/resources/guides/
30.	https://github.com/finos-labs/osmm
31.	 https://commission.europa.eu/about-european-

commission/departments-and-executive-agencies/
digital-services/open-source-software-strategy_en

https://books.google.com/books?id=04jG7TTLujoC&pg=PT18
https://books.google.com/books?id=04jG7TTLujoC&pg=PT18
https://cmr.berkeley.edu/2020/06/privatized-open-source-software/
https://cmr.berkeley.edu/2020/06/privatized-open-source-software/
https://a16z.com/open-source-is-finally-coming-to-financial-services/
https://a16z.com/open-source-is-finally-coming-to-financial-services/
https://interledger.org/case-studies/making-digital-payments-affordable-and-simple-for-everyone-everywhere/%7b~?~URL
https://interledger.org/case-studies/making-digital-payments-affordable-and-simple-for-everyone-everywhere/%7b~?~URL
https://interledger.org/case-studies/making-digital-payments-affordable-and-simple-for-everyone-everywhere/%7b~?~URL
https://opensource.google/documentation/reference/why
https://opensource.google/documentation/reference/why

Open-Source Technologies in the Context of Fast Payment Systems  |  31

32.	National Cyber Security Centre, n.d., “Log4j
Vulnerability—What Everyone Needs to Know,” https://
www.ncsc.gov.uk/information/log4j-vulnerability-what-
everyone-needs-to-know; and CISA, 2021, “Mitigating
Log4Shell and Other Log4j-Related Vulnerabilities,”
https://www.cisa.gov/news-events/cybersecurity-
advisories/aa21-356a.

33.	https://www.cisa.gov/sites/default/files/publications/
CSRB-Report-on-Log4-July-11-2022_508.pdf

34.	https://www.cisa.gov/sites/default/files/publications/
CSRB-Report-on-Log4-July-11-2022_508.pdf

35.	https://www.synopsys.com/software-integrity/engage/
ossra/ossra-report

36.	Stallings, W., and L. Brown. 2014. Computer Security:
Principles and Practice, 3rd ed. Upper Saddle River, NJ:
Pearson Prentice Hall.

https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a

	CONTENTS
	Appendix A
	Endnotes

